
173

0022-4715/01/1000-0173$19.50/0 © 2001 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 105, Nos. 1/2, October 2001 (© 2001)

Thermodynamic Properties of the One-Dimensional
Two-Component Log-Gas
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We consider a one-dimensional continuum gas of pointlike positive and negative
unit charges interacting via a logarithmic potential. The mapping onto a two-
dimensional boundary sine-Gordon field theory with zero bulk mass provides
the full thermodynamics (density-fugacity relationship, specific heat, etc.) of the
log-gas in the whole stability range of inverse temperatures b < 1. An exact
formula for the excess chemical potential of a ‘‘foreign’’ particle of an arbitrary
charge, put into the log-gas, is derived. The results are checked by a small-b
expansion and at the collapse b=1 point. The possibility to go beyond the
collapse temperature is discussed.

KEY WORDS: Two-component plasma; one dimension; logarithmic interac-
tion; thermodynamics; boundary sine-Gordon model; integrability.

1. INTRODUCTION

The model under consideration is a two-dimensional (2D) two-component
(TC) classical Coulomb gas confined to a 1D manifold, the circle of radius
R or its RQ. limit the straight line. It is usually named as the symmetric
1D TC log-gas. The model consists of a mixture of mobile pointlike
particles {j} of positive and negative, say unit, charges {qj=±}, localized
at continuous angle positions {jj} on the circle of length L=2pR. The
interaction energy reads

E({qj, jj})=C
j < k

qjqkv(jj, jk) (1.1)



where v(j, jŒ) is the 2D Coulomb potential with imposed periodic bound-
ary conditions,

v(j, jŒ)=−ln 31R
r0
2 |e ij− e ijŒ|4 (1.2)

The length constant r0, which fixes the zero point of energy, will be set for
simplicity to unity. In the thermodynamic limit RQ., which is of interest
in this paper, introducing the straight line position variable x ¥ (−.,.)
via x=jR, the interaction potential (1.2) takes the familiar logarithmic
form

v(x, xŒ)=−ln(|x−xŒ|) (1.3)

For pointlike particles, the interaction Boltzmann factor of a positive-
negative pair of charges at distance x, x−b where b is the inverse tempera-
ture, is integrable on a 1D manifold at small x if and only if b < 1 (at large x,
there is no problem because the interaction is screened by the system), with
b=1 being the collapse point. In its conductive phase, the model exhibits
poor screening properties, a typical feature of a D-dimensional Coulomb
system confined to a domain of dimension D−1. (1) As a consequence, the
leading non-oscillatory term of the large-distance asymptotic decay of the
charge charge correlation is algebraically slow ’ −1/[b(px)2]. (2)

The 1D TC log-gas, with ± charges required to alternate in space, is
equivalent to the impurity Kondo problem. (3–5)

The 1D TC log-gas, without any restriction on the charge order, is
related to the problem of quantum Brownian motion of a particle in a 1D
periodic potential. (6–8) The model was also studied in connection with the
problem of non-equilibrium quantum transport through a point contact
in a 1D Luttinger liquid, (9–11) having a realization in resonant tunneling-
transport experiments between edge states in fractional quantum Hall effect
devices. (12)

The 1D TC log-gas with a hard core, or with some other short-dis-
tance regularization of the Coulomb interaction potential, undergoes a 1D
counterpart of the Kosterlitz–Thouless transition from a conducting phase
to a low-temperature insulating phase around b=2. An approximate
analytic study of the gas with log(1+|x|) interaction was given in ref. 13.
The lattice version of the model was exactly solved at b=1, 2, 4 and its
conductor-insulator phase diagram was conjectured in refs. 14–16.

Recently, (17) the bulk thermodynamic properties (density-fugacity
relationship, free energy, internal energy, specific heat, etc.) of the infinite
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2D TC plasma have been obtained exactly, in the whole model’s stability
range of temperatures, by mapping the plasma onto a 2D bulk sine-
Gordon field theory and then using recent results about that integrable
field theory. The aim of this paper is to derive the full thermodynamics of
the confined plasma, the 1D TC log-gas, via its relationship to the 2D
boundary sine-Gordon field theory with zero bulk mass. The particle
nature of the statistical model permits one to check the obtained behaviour
of thermodynamic quantities close to the collapse b=1 point, and to
suggest a possible analytic extension of the results beyond that collapse
point.

The mapping onto the 2D boundary sine-Gordon model is outlined
within the grandcanonical formalism in Section 2. To give to the mapping
a precise meaning, we analyse the short-distance behaviour of the pair
distribution function for two basic combinations of particle charges. The
relationship between the ordinary statistical mechanics (18, 19) and the
Conformal Perturbation theory (20) is established. As a byproduct, for an
‘‘external’’ (or, probably more adequately, ‘‘foreign’’) particle with an
arbitrary charge put into the log-gas, a relation between its excess chemical
potential and the one-point expectations of the exponential boundary field
in the sine-Gordon model is derived.

Section 3, devoted to the derivation of full thermodynamics of the 1D
TC log-gas, is based on an exact fromula for the above one-point expecta-
tions, (21) obtained by using a ‘‘reflection’’ relationship between the 2D
boundary Liouville and sinh-Gordon theories.

Section 4 brings a discussion about a possible analytic extension of the
acquired results to the collapse region 1 [ b [ 2. In this region, one could
attach to the particles a small hard core s in order to prevent the collapse,
then calculate thermodynamic quantities, and at the end take the sQ 0
limit. In this limit, while the free energy and the internal energy per particle
diverge, the specific heat, truncated correlation functions, etc., are expected
to remain finite. (22) An analytic continuation of the formula for the specific
heat (at constant volume) predicts an infinite sequence of phase transitions
from the conducting plasma phase b [ 1 to the insulator region b \ 2. In
two dimensions, such a phenomenon was predicted in ref. 23 but later
denied in ref. 24.

Whenever possible, the results are checked by a systematic small-b
(high-temperature) expansion, using a renormalized Mayer expansion
technique developed in refs. 17, 25, and 26 (see Appendix), and close to the
collapse b=1 point, by applying arguments in the spirit of an independent-
pair approximation, (22) which assumes a dominant contribution from
almost collapsed positive-negative pairs of charges to the configurational
integral.
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2. MAPPING ONTO THE BOUNDARY SINE-GORDON THEORY

Let us first examine a general TC plasma of q=±1 charges in an
infinite 2D space of points r=(x, y). We will work in the grand canonical
ensemble, with position-dependent fugacities z+(r) and z−(r) of the positive
and negative particles, respectively. In infinite space, −D/(2p) is the
inverse operator of the Coulomb potential − ln(|r|). Using the standard
procedure (see, e.g., ref. 27), the grand partition function X of the plasma
at inverse temperature b, considered as the functional of particle fugacities,
can be turned into

X[z+, z−]=
> Df exp[> d2r( 1

4p f Df+z+(r) e i`b f+z−(r) e−i`b f)]

> Df exp (> d2r 1
4p f Df)

(2.1)

Here, f(r) is a real scalar field, > Df denotes the functional integration over
this field and the fugacities are renormalized by a self-energy term. The
consideration of

zq(r)=zq(x) d(y) (2.2)

confines the charges to the x-line,

X[z+, z−]=
>Df exp{> d2r( 1

4p f Df)+>.−. dx[z+(x) e i`b fB+z−(x) e−i`b fB]}

>Df exp(> d2r 1
4p f Df)

(2.3)

where fB(x) — f(x, y=0) is the boundary field.
To reformulate the field theory (2.3) as a boundary problem, in formal

analogy with refs. 28 and 29, one introduces two new fields

fe(x, y)=
1

`2
[f(x, y)+f(x, −y)] (2.4a)

fo(x, y)=
1

`2
[f(x, y)−f(x, −y)] (2.4b)

defined only in the upper half-plane y \ 0. The even field has a Neumann
boundary condition “yfe |y=0=0 and the odd field has a Dirichlet bound-
ary condition fo |y=0=0. It holds

F d2r f Df=F
y > 0

d2r(fe Dfe+fo Dfo) (2.5)
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The odd field, contributing only by its free-field part fo Dfo, disapears from
(2.3) by numerator-denominator cancelation. By integration per partes,
the term fe Dfe can be rewritten as −(Nfe)2, with a vanishing contribution
from the boundary. Considering that fB(x)=fe(x, y=0)/`2, and
renaming then fe as f, (2.3) transforms to

X[z+, z−]=
> Df exp(−SsG[z+, z−])
> Df exp(−SsG[0, 0])

(2.6)

with the action

SsG[z+, z−]=F
.

−.
dx F

.

0
dy

1
4p

(Nf)2−F
.

−.
dx[z+(x) e ibfB+z−(x) e−ibfB]

(2.7a)

b=2b2 (2.7b)

where again fB(x) — f(x, y=0) and the f-field has the Neumann boundary
condition. For uniform and equivalent charge fugacities, z+(x)=z−(x)=z,
one gets the boundary sine-Gordon model with zero bulk mass,

SsG(z)=F
.

−.
dx F

.

0
dy

1
4p

(Nf)2−2z F
.

−.
dx cos(bfB) (2.8)

The sine-Gordon representation of the multi-particle densities can be
obtained from the functional generator (2.6), (2.7) in a straightforward
way. The density of particles of one sign is

nq=zq
d ln X
dzq(x)
:
zq (x)=z

=zqOe iqbfBPsG (2.9)

where O · · ·PsG denotes the averaging over the sine-Gordon action (2.8).
Here, although the charge symmetry is considered, i.e., n+=n−=n/2 (n is
the total number density of particles), we leave the q-subscript in order to
make transparent identities like Oe ibfBPsG=Oe−ibfBPsG. This identity is a
special case of a general symmetry relation

Oe iafBPsG=Oe−iafBPsG, a arbitrary (2.10)
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which results from the invariance of the sine-Gordon action (2.8) with
respect to the transformation fQ −f. The pair distribution function
gq, qŒ(x, xŒ) is given by

gq, qŒ(|x−xŒ|)=1 zq
nq
21 zqŒ

nqŒ
2 1
X

d2X

dzq(x) dzqŒ(xŒ)
:
zq (x)=z

=1 zq
nq
21 zqŒ

nqŒ
2 Oe iqbfB(x)e iqŒbfB(xŒ)PsG (2.11)

and so on.
In statistical mechanics, the short-distance behaviour of the pair dis-

tribution function gq, qŒ(|x−xŒ|) is dominated by the Boltzmann factor of
the pair potential,

gq, qŒ(x, xŒ) ’ Cq, qŒ |x−xŒ|bqqŒ as |x−xŒ|Q 0 (2.12)

(provided b is small enough; see below). The prefactors Cq, qŒ are related to
a free energy difference. (18, 19) For qŒ=−q, one has

Cq, −q=exp[b(mex
++mex

− )] (2.13)

where mex
q is the excess chemical potential of species q. Strictly speaking,

relations (2.12) and (2.13) are valid only for b < 1; at b=1, due to the
collapse of positive-negative pairs of charges, mex

± Q.. On the other hand,
for the truncated two-body densities n (T)

q, qŒ(x, xŒ)=nqnqŒ[gq, qŒ(x, xŒ)−1], the
short-distance asymptotics analogous to that given by Eq. (2.12) with
qŒ=−q takes place also for b > 1. For qŒ=q, one has

Cq, q=exp[b(2mex
q −mex

2q)] (2.14)

Here, we use an extended definition of the excess chemical potential for
‘‘foreign’’ ions with arbitrary charges, put into the underlying electrolyte:
mex

Q = reversible work which has to be done in order to bring a foreign
particle of charge Q from infinity into the bulk interior of the 1D TC
plasma of unit ± charges (the consequent breaking of the system neutrality
has a negligible effect in the thermodynamic limit). This quantity is of
evident importance in chemistry. The interaction Boltzmann factor of the
Q charge and an opposite unit charge at distance x, x−b|Q|, is integrable at
small x if and only if |Q|b < 1. The stability region for mex

Q therefore is
expected to be b < 1/|Q| with mex

Q diverging just at b=1/|Q|. As a conse-
quence, relations (2.12) and (2.14) are valid only for b < 1/2. For b > 1/2,
the two-point correlator 3 |x−xŒ|1−b; the analysis of this change
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in the short-distance expansion goes beyond the scope of the present work.
With regard to the thermodynamic relation

ln 1 zq
nq
2=bmex

q (2.15)

we conclude that, for q=± , it holds

Oe iqbfBPsG=exp(−bmex
q ) (2.16)

and

Oe iqbfB(x)e−iqbfB(xŒ)PsG ’ |x−xŒ|−2b2 as |x−xŒ|Q 0 (2.17a)

Oe iqbfB(x)e iqbfB(xŒ)PsG ’ e−bmex
2q |x−xŒ|2b

2
as |x−xŒ|Q 0 (2.17b)

where we have used the equality b=2b2, see formula (2.7b).
In quantum field theory, the sine-Gordon model (2.8) can be regarded

as a conformal field theory perturbed by the boundary cos-field. The short
distance expansions for multi-point correlation functions are then obtain-
able by using the Operator Product expansions (OPE). (30) The vacuum one-
point expectations, in our case Oexp(iafB)PsG with an arbitrary value of a,
are the basic objects of the OPE scheme which contain the whole nonper-
turbative information about the system. For the product of two primary
fields e ia1f(x1)e ia2f(x2), the OPE has the form

e ia1fB(x1)e ia2fB(x2)= C
.

n=−.
[Cn, 0

a1, a2 (|x1 −x2 |) e i(a1+a2+nb) fB(x2)+· · · ] (2.18)

where the coefficients C are computable within the Conformal Perturbation
theory. (20) By successive application of (2.18) the short-distance behaviour
of any multi-point correlation function of the exponential field can be
reduced to one-point functions. For the present model, the leading short-
distance term of the two-point function reads

Oe iqbfB(x)e iqŒbfB(xŒ)PsG ’ Oe i(q+qŒ) bfBPsG | x−xŒ|2qqŒb
2

as |x−xŒ|Q 0 (2.19)

For qŒ=−q, formula (2.17a) is reproduced. For qŒ=q, the combination of
(2.17b) and (2.19) implies the relationship

exp(−bmex
2q)=Oe i2qbfBPsG (2.20)

The above formalism generalizes straightforwardly to Q-particle dis-
tribution functions (Q positive integer), with the result

exp(−bmex
Q )=Oe iQbfBPsG (2.21)
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Eqs. (2.16) and (2.20) are the lowest Q=1 and Q=2 cases, respectively, of
this formula. We expect the validity of relation (2.21) also for noninteger
values of Q. An analogous formula can be derived for the infinite
(unconfined) 2D TC plasma.

3. THERMODYNAMICS

The 2D boundary sine-Gordon theory with the action (2.8) has a
discrete symmetry fQ f+2pn/b with any integer n. In the domain
0 < b2 < 1 this symmetry is spontaneously broken and the theory has infi-
nitely many ground states |0nP, characterized by the associate expectation
values of the field f, OfPn=2pn/b. One has to choose one of these ground
states, say |00P, and consider O · · ·PsG — O · · ·P0. The parameter z, which
renormalizes multiplicatively, gets a precise meaning when one fixes the
normalization of the field cos(bfB). The conformal normalization, (21) based
on the OPE scheme (2.18) and consistent with formula (2.17a) derived via
the 1D TC log-gas, corresponds to the short-distance limit of the two-point
function

Oe iafB(x)e−iafB(xŒ)PsG ’ |x−xŒ|−2a2 as |x−xŒ|Q 0 (3.1)

Under normalization (3.1), the expectation value of the exponential
boundary field was obtained in ref. 21,

Oe iafBPsG=5
2b2pz
C(b2)
6a

2/(1−b2)

exp 3F.
0

dt
t
5 (e t−1+e t(1−b2)+e−b2t) sinh2(abt)
2 sinh(b2t) sinh(t) sinh((1−b2) t)

−a2 1 1
sinh((1−b2)t)

+e−t264 (3.2)

where |Re 2a| < 1/b. This result was derived under assumption of a
‘‘reflection’’ relationship between the 2D boundary Liouville and sinh-
Gordon theories (with zero bulk mass), and the consequent analytic conti-
nuation of the latter theory in the b-parameter to the boundary sine-
Gordon model. For the case of special interest a=b, using the integral
representation of the Gamma function

ln C(x)=F
.

0

dt
t
e−t 5x−1+

e−(x−1)t−1
1− e−t
6 , Re x > 0 (3.3)
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after some algebra, relation (3.2) takes a simpler form

Oe ibfBPsG=
1

4p3/2(1−b2) z
C 11−2b2

2−2b2
2 C 1 b2

2−2b2
25 2pz
C(b2)
61/(1−b2)

(3.4)

On account of the symmetry relation (2.10), it holds

Oe ibfBPsG=
1
2
“

“z
lim
LQ.

1
L
ln XL (3.5)

where L is the length of the system. Since XL(z=0)=1, one has

lim
LQ.

1
L
ln XL=

1
2p3/2 C
11−2b2

2−2b2
2 C 1 b2

2−2b2
25 2pz
C(b2)
61/(1−b2)

(3.6)

Relating the sine-Gordon parameters with those of the TC log-gas,
b=2b2 from (2.7b) and n/(2z)=Oexp(ibfB)PsG according to (2.9), for-
mulae in the above paragraph imply the explicit n−z relation for the
plasma:

n1−b/2

z
=

2p
C(b/2)
5 1
2p3/2(1−b/2)

C 11−b
2−b
2 C 1 b/2

2−b
261−b/2 (3.7)

The small-b expansion of the rhs of (3.7) reads

n1−b/2

z
=2bb/2 exp 3(C+ln p)

b

2
+

1
12

[p2+7z(3)] 1b
2
23

+
1
12

[p2+6z(3)] 1b
2
24+O(b5)4 (3.8)

where C is the Euler’s constant and z is the Riemann’s zeta function.
Formula (3.8) is checked in the Appendix by using a renormalized Mayer
expansion in density. For fixed z, relation (3.7) tells us that the particle
density n exhibits the expected collapse singularity as bQ 1−:

n ’
4z2

1−b
(3.9)

The form of this singularity can be reproduced indirectly by using a perfect-
screening sum rule for the one-body densities,

nq=F dx[n(T)
q, −q(x)−n (T)

q, q(x)] (3.10)
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where the truncated two-body densities n (T)
q, qŒ(x, xŒ)=nqnqŒ[gq, qŒ(x, xŒ)−1].

For bQ 1−, the integral in (3.10) is dominated by the short-distance behav-
iour of n (T)

q, −q(x) ’ z2 |x|−b [see relations (2.12), (2.13) and (2.15)]. Then,

n
2
=F

l

−l
dx

z2

|x|b
=

2z2

1−b
l1−b=

2z2

1−b
+O(1) (3.11)

where l is a length over which the Coulomb interaction is screened by the
system, and the singular behaviour (3.9) is justified.

To get the full thermodynamics of the 1D TC log-gas, we pass from
the grandcanonical to the canonical ensemble via the Legendre transfor-
mation

FL(b, N)=WL+mN (3.12)

Here, the total particle number N=nL, the chemical potential

m(b, n)=
1
b
ln z(b, n) (3.13)

and the grand potential W is defined by

−bWL=ln XL=L 11−b
2
2 n (3.14)

where we have combined Eqs. (3.4) and (3.6). Note that the thermody-
namic relation ln XL=bPL (P is the pressure) implies the well-known
equation of state

bP=11−b
2
2 n (3.15)

The dimensionless specific free energy f, f=bFL/N, is then written as

f(b, n)=11−b
2
25−1+ln n+ln 11−b

2
26−b

2
ln 2+

1
2
11−3b

2
2 ln p

+ln C 1b
2
2−11−b

2
25ln C 11−b

2−b
2+ln C 1 b/2

2−b
26 (3.16)

According to the elementary thermodynamics, the (excess) internal energy
per particle, uex=OEP, and the (excess) specific heat at constant volume
per particle, cex

V =Cex
V /N, are given by
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uex=
“

“b
f(b, n) (3.17a)

cex
V

kB
=−b2 “

2

“b2 f(b, n) (3.17b)

For cex
V , one gets explicitly

cex
V

kB
=

b2

4(2−b)3
32kŒ 11−b

2−b
2+(b−2)3 kŒ 1b

2
2

−2(b−2)2+2kŒ 1 b/2
2−b
24 (3.18)

where k(x)=d[ln C(x)]/dx is the psi function. The series representation
of its first derivative reads

kŒ(x)=C
.

j=0

1
(x+j)2

(3.19)

The expansion of cex
V /kB around the collapse point bQ 1− results in the

Laurent series

cex
V

kB
=

1
2(1−b)2

−
3

2(1−b)
+13

2
+
5p2

24
2+O(1−b) (3.20)

The leading term of this series can be reproduced by regarding that, under
assumption (3.11),

f(b, n) ’ 1
2 ln(1−b)−

1
2(1−b) ln l as bQ 1− (3.21)

and then applying (3.17b).
As concerns the excess chemical potential of a foreign particle of

charge Q in the plasma, setting a=bQ and b2=b/2 in (3.2), relation (2.21)
gives

−bmex
Q=

bQ2

2−b
ln5 2

b/2pz
C(b/2)
6+F

.

0

dt
t
5(e t−1+e t(1−b/2)+e−bt/2) sinh2(Qbt/2)
2 sinh(bt/2) sinh(t) sinh((1−b/2)t)

−
bQ2

2
1 1
sinh((1−b/2) t)

+e−t26 (3.22)

In the limit of large t, the first integrand behaves like (1/t) exp[(b|Q|−1)t],
and therefore the integral is finite if b < 1/|Q|. As was argued in the
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previous section, this is the true stability region for mex
Q . For |Q| < 1,

mex
Q remains finite also in a subspace of the collapse region, namely in the

interval 1 < b < 1/|Q|. Everything what was said above holds only when
b < 2. Approaching the conductor-insulator phase transition at point
b=2, the first term on the rhs of (3.22) diverges for an arbitrary Q.

4. DISCUSSION

All results in this paper were derived under the assumption that the
system is stable against collapse, i.e., in the range of inverse temperatures
b < 1. The only exception is represented by the excess chemical potential
mex

Q of a ‘‘foreign’’ Q-charged particle embedded in the plasma: if |Q| < 1,
relation (3.22) applies also to the collapse region, up to b=1/|Q|. A nat-
ural question arises whether there is a possibility to make an analytic
continuation of the explicit result for some bulk quantity into the collapse
region 1 < b < 2. The best candidate for such a continuation is the specific
heat, formula (3.18), which might be in the sense explained in the Intro-
duction a well defined finite quantity also in the collapse region.

Before going further, let us recall the work of Gallavotti and Nicoló (23)

concerning the infinite 2D TC Coulomb gas of unit ± charges. In two
dimensions, the particle collapse occurs at b=2 and the Kosterlitz–
Thouless phase transition (for a small, but nonzero, hard core of particles)
takes place around b=4. By studying the Mayer series of the specific
grand potential in fugacity it was proven in ref. 23 that each term of the
series converges in the insulator region b > 4. For b [ 4, the existence of
infinitely many thresholds

2D: bN=4 11− 1
2N
2 , N=1, 2,... (4.1)

was observed: only the Mayer series’ coefficients up to order 2N are finite
if b > bN. Points {bN} were conjectured to correspond to a sequence of
transitions from the pure multipole insulating phase (b > 4) to the con-
ducting plasma phase (b < 2) via an infinite number of intermediate
phases. Although the mathematics used in ref. 23 was quite complicated,
there exists a simple explanation of the above findings. (32) For a neutral
choice of N positive and N negative charges in a disk of radius R, the
most relevant contribution to the coefficient of the z2N term comes from the
complete-star integral, after approximating the Mayer function by
exp(−bv),

1
pR2 F

R

s

D
N

i=1
d2ri d2r −i

< i < j |ri − rj |b |r
−

i − r −j |
b

< i, j |ri − r −j |
b

(4.2)
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where s is a small hard-core diameter and r (rŒ) denote spatial coordinates
of positive (negative) charges. Rescaling ri Q Rsi and r −i Q Rs −i, one gets
(4.2)=RN(4−b)−2×f(s/R) which diverges as RQ. just when b < bN. In
two dimensions, the formula for cex

V /kB in the region b < 2 is presented
in ref. 17, relation (56). The only source of the singularities of cex

V /kB,
extended into the region 2 < b < 4, is the term 3 sin−2(pb/(4−b)), which
gives a double pole at

b̄N=4 11− 1
N+1
2 N=1, 2,... (4.3)

For N=1, 3, 5,..., these singular points coincide with the ones in (4.1).
However, there are additional divergencies of cex

V /kB for N=2, 4, 6,...
when cex

V /kB Q −., which is an unacceptable thermodynamic behaviour.
Therefore, in 2D, the analytic extension of the formula for cex

V /kB is mea-
ningless, what supports the arguments of Fisher et al. (24) indicating the total
absence of any intermediate phase at nonzero particle density.

The situation is different in 1D. The dominant configuration integral
of the z-series at the 2Nth order

1
L

F
L

s

D
N

i=1
dxi dx

−

i

< i < j |xi −xj |b |x
−

i −x −j |
b

< i, j |xi −x −j |
b

(4.4)

diverges for the line length LQ. when b < bN with

1D: bN=2 11− 1
2N
2 , N=1, 2,... (4.5)

The singularities of cex
V /kB, given by formula (3.18), originate in the region

1 < b < 2 exclusively from the term kŒ((1−b)/(2−b)). According to
(3.19), kŒ(x) has second-order poles at x=1−N (N=1, 2,...). The corre-
sponding b̄N coincide just with bN, so the analytic continuation of (3.18)
into the collapse region 1 < b < 2 reproduces exactly the singularities
suggested by Gallavotti and Nicoló. Moreover, cex

V /kB is always positive in
the underlying region 1 < b < 2. It is therefore tempting to conjecture that
the multipole intermediate phases might exist in 1D.

The last remark concerns the generalization of the relation (3.11) to
the case of a small hard core s:

n
2
=2 F

l

s

dx
z2

|x|b
=

2z2

1−b
(l1−b−s1−b) (4.6)
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with l > s. Then, around b=1, the free energy

f ’
1
2
ln 1 1−b
l1−b−s1−b

2 (4.7)

is well defined for bQ 1− as well as bQ 1+. Applying (3.17b) and taking
the sQ 0 limit, one finds

cex
V

kB
’

1
2(1−b)2

for both bQ 1− and bQ 1+ (4.8)

i.e., the leading singular term of the expansion (3.20) admits an analytic
continuation from b < 1 to the b > 1 region. This fact supports the above
conjecture.

We hope to motivate numerical simulations of the model under con-
sideration.

Finding an integrable TC Coulomb gas with some short-range regu-
larization of the interaction Coulomb potential might be a realistic task in
one dimension.

APPENDIX

We consider the 1D TC log-gas confined to a straight line of size
LQ.. A pair of (± )-charged particles i, j interacts via

v(xi, qi | xj, qj)=qiqjv(xi, xj) (A.1)

where the Coulomb potential v(x, xŒ) is defined by (1.3). The supposed
equality of the species fugacities z+=z−=z corresponds to a neutral
system with homogeneous particle densities n+=n−=n/2.

The renormalized Mayer expansion in density (for details, see refs. 17,
25, and 26) is based on the expansion of each Mayer function in the inverse
temperature b, and on the consequent series elimination of two-coor-
dinated field circles between every couple of three- or more-coordinated
field circles; by coordination of a circle we mean its bond coordination.
The renormalized bonds are given by

K −bv
p~~~~~~p = p| | |p + p| | |•| | |p +·· ·
x, q xŒ, qŒ x, q xŒ, qŒ x, q xŒ, qŒ

(A.2)
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where, besides the integration over spatial coordinate x of a field (black)
nq(x)-circle, the summation over charge q-states at this vertex is assumed as
well. For the interaction under consideration (A.1), the renormalized bonds
exhibit the same charge-dependence,

K(x, q | xŒ, qŒ)=qqŒK(x, xŒ) (A.3a)

where K(x, xŒ)=K(|x−xŒ|) is given by

K(x)=−
b

2
F
.

−.
dk

exp(ikx)
|k|+pnb

(A.3b)

By a simple rescaling of integration variable k, K is shown to exhibit a
special scaling form

K(x)=−bK̄(pnb |x|) (A.4a)

K̄(x)=
1
2
F
.

−.
dk

exp(ikx)
|k|+1

(A.4b)

The small-x expansion of K reads (31)

K(x) ’ b[ln(pnb |x|)+C− 1
2p

2nb |x|+· · · ] (A.5)

where C is the Euler’s constant. At asymptotically large-x distances, by
using twice integration per partes it can be shown that K decays algebrai-
cally as follows

K(x) ’ −
b

(pnbx)2
(A.6)

which exhibits the poor screening properties of log-gases in 1D. (1, 2)

The procedure of bond-renormalization transforms the ordinary
Mayer representation of the dimensionless (minus) excess Helmholtz free
energy, denoted as D[n], into

D[n]=•| | |•+D(0)[n]+C
.

s=1
D (s)[n], (A.7a)

where

D (0)= ·· · (A.7b)
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is the sum of all unrenormalized ring diagrams and {D(s)} represents the set
of all remaining completely renormalized graphs; the first few D (s)-graphs
are drawn in the sketch (11) of ref. 17. The first term on the rhs of (A.7a)
is fixed to zero by charge neutrality. The second term D (0), Eq. (A.7b), is
expressible as follows (17)

D (0)=
L
2
F
n

0
dnŒ lim

xQ 0
[K(x, nŒ)+bv(x)] (A.8)

With respect to (A.5), one gets

D (0)

L
=
b

2
(n ln n−n)+

bn
2

[C+ln(pb)] (A.9)

As concerns the completely renormalized graphs, due to the ± charge
symmetry, only those D (s) are nonzero whose all vertices have an even bond
coordination. The scaling form of the dressed bond K, formula (A.4),
permits us to perform the n- and b-classification of a nonzero diagram D (s),
composed of Ns vertices (each bringing the factor n) and Ls bonds. Each
dressed bond contributes by the factor −b and enforces the substitution
xŒ=xpnb which manifests itself as the factor 1/(pnb) for each field-circle
integration >dx. Since there are (Ns −1) independent field-circle integra-
tions in D (s), one concludes that

D (s)

L
=nbLs −Ns+1ds (A.10a)

where ds is the number

ds=
D (s)(n=1, b=1)

L
(A.10b)

The first nonzero diagram from the sketch (11) of ref. 17 is

D (2)= (A.11a)

It contributes to the b3 order, with

d2=
1

2! 4!
F
.

−.

dx
p

K̄4(x) (A.11b)
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In the next b4 order, only diagram

D (6)= (A.12a)

survives, and

d6=
1

3! (2!)3
F
.

−.

dx1

p
F
.

−.

dx2

p
K̄2(x1) K̄2(x2) K̄2(|x1 −x2 |)) (A.12b)

etc. To evaluate d2 and d6, we Fourier-transform K̄2(x):

Ĝ(k)=F
.

−.

dx

`2p
e−ikx K̄2(x)

=`2p
(1+|k|)

|k| (2+|k|)
ln(1+|k|) (A.13)

In terms of Ĝ(k),

d2=
1

2! 4! p
F
.

−.
dk Ĝ2(k) (A.14a)

d6=
1

3! (2!)3 p2`2p F
.

−.
dk Ĝ3(k) (A.14b)

With the aid of the substitution 1+k=exp(t) (k and t positive),

d2=
1
12

1
23 [p

2+7z(3)] (A.15a)

d6=
1
12

1
24 [p

2+6z(3)] (A.15b)

where z is the Riemann’s zeta function.
Finally, for q=± ,

ln 1nq
z
2=ln 1 n

2z
2= “

“n
5D(n)

L
6 (A.16)
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Using results of the previous paragraph, one ends up with

n1−b/2

z
=2bb/2 exp 3(C+ln p)

b

2
+C

.

s=1
dsb

Ls −Ns+14

=2bb/2 exp 3(C+ln p)
b

2
+

1
12

[p2+7z(3)] 1b
2
23

+
1
12

[p2+6z(3)] 1b
2
24+O(b5)4 (A.17)

in agreement with (3.8).
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